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A generalized mobility/impedance-power #ow mathematical model is developed to
analyze the dynamical behaviour of a complex coupled system consisting of any number of
substructures with various con"gurations and multiple interaction interfaces. The coupled
system is subject to multiple excitations and selected boundary conditions. Generalized
mobility/impedance matrix formulations for three-dimensional rigid and elastic structures
of general con"guration are "rst derived allowing the construction of equivalent mobility
(EMM) and equivalent impedance (EIM) matrices to describe the dynamical behaviour of
a substructure or a subsystem assembled from several inter-connected substructures within
the overall system. Based on these two proposed matrices, two progressive approaches are
developed to predict the force vectors and velocity response vectors as well as the power
#ows into and transmission between substructures in the complex coupled system. The
developed mathematical model avoids the generalized inverse process associated with
rectangular matrices when dealing with multi-input/multi-output (MIMO) systems in which
the dimensions of input and output are di!erent. It is also very #exible and conveniently
extended if additional substructures are further connected to the original dynamic system
without involving much additional computational e!ort. The proposed methods are shown
to reduce the complexity of the power #ow analysis applied to complex dynamic coupled
systems and they are applicable to a very large class of dynamical systems in engineering. To
illustrate and demonstrate their usage, the dynamics of a #exible raft vibration isolation
system is investigated; this comprises two machines, #exible raft, and #exible foundation
with connecting isolator attachments.
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1. INTRODUCTION

Power #ow analysis (PFA) or statistical energy analysis (SEA) has become widely accepted
as a valuable technique to predict statistical responses of dynamic systems and vibrational
power #ows through structures or assembled structures at medium to high frequencies
[1}23]. The fundamental concepts of SEA and PFA have been discussed by Lyon [1], Price
and Keane [2], Goyder and White [5}7] and Pinnington and White [8, 9], with signi"cant
advances reported in recent publications [2}4]. Langley [10] presented a direct-dynamic
0022-460X/01/020275#21 $35.00/0 ( 2001 Academic Press
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sti!ness method to analyze the power #ow in beams and frameworks. Clarkson [11]
applied the receptance method to investigate the transmission of vibrational energy across
structural joints of connected beams and connected plates. Mead et al. [12] studied power
transmission in a periodically supported in"nite beam subject to a single excitation.
Cuschieri [13, 14] used a mobility approach to analyze the power #ow in periodically
connected beams and ¸-plates subject to a single excitation. Farag and Pan [15] extended
Cuschieri's work to coupled two-dimensional beam structures with multiple joints under
in-plane loading. The mobility functions of vacuous elastic cylindrical shells were
numerically studied by Ming et al. [16] and applied to estimate both the input power and
the power #ow in coupled "nite cylindrical shell systems. Gardonio et al. [17] presented
a model of vibration isolation systems by developing a matrix method using mobility or
impedance representations of three separate elements: the source of vibration, the receiver
and the mounting system and investigated "ve di!erent active control strategies to reduce
the structural power transmission from a source to a receiver via a number of active mounts
[18]. Cho and Bernhard [19] developed a governing energy di!erential equation to
describe the far "eld vibrational energy state and to predict the frequency-averaged energy
per unit length and energy #ow distributions in built-up structures. The transmission of
vibratory power #ow from a vibrating rigid body into a thin supported panel through two
mounts was investigated by Pan et al. [20]. Li et al. [21] studied a more complex case
concerning the transmission of vibration power #ow from a vibrating rigid machine into
a rectangular plate with a number of reinforcing beams placed in any directions. Li et al.
[22] studied power #ow for a simple #oating beam-like raft isolation system with one
machine subject to a single harmonic force excitation using a Green function. Investigations
relating to a power #ow analysis mainly focus on individual structures, coupled beam- or
plate-like structures or periodic systems. From the more generic viewpoint of continuum
mechanics, Xing and Price [23] developed a power #ow analysis method based on
continuum dynamics. The characteristics of energy #ow and energy exchange within the
continuum were described through the introduction of concepts such as an energy #ow line
and an energy #ow potential, equipotential surface, etc. The generalized power #ow
equations describing the characteristics of energy #ow and energy exchange within the
continuum are presented; however, the solution of these equations directly to obtain power
#ow distributions requires further study.

Many techniques are presented in the literature to predict dynamic characteristics of
coupled systems composed of various subsystems, e.g. receptance theory [24] frequency
response function (FRF), transfer matrix, the four-pole parameter method, etc. The FRF
method [25] is more suitable to a system consisting of only two subsystems. If additional
subsystems are further connected to the original system, computational e!ort to derive
solution greatly increases. The four-pole parameter method [26, 27] is a classical technique
for deriving dynamic characteristics of an assembled system connected in series or in
parallel. Although this method was originally limited to unidirectional single-input/
single-output (SISO) linear mechanical systems, recently, however, Ha and Kim [28] and
Xiong [29] extended the four-pole parameter method to multiple-input/multiple-output
(MIMO) linear systems. However, when assembling substructures in these systems with
di!erent inputs and outputs, generalized inverse or pseudo-inverse [30] processes
associated with rectangular four-pole parameter matrices are required to examine or to
estimate coupling interactions [28,29]. This causes increased complexity in the
mathematical model and subsequent solution.

Mobility matrices describing the dynamic characteristics of some typical elements, such
as, rod, shaft, beam and plate, etc., are very useful in calculating structural power #ows
[12}22]. However, they are not readily available when analyzing complex coupled systems,
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especially with various and di!ering con"gurations. In this paper, to overcome such
di$culty, generalized mobility and impedance matrices for three-dimensional rigid and
elastic structures are derived. Based on this information, equivalent mobility and equivalent
impedance matrices are introduced to describe the dynamical behaviour of a subsystem
assembled from several inter-connected substructures within the overall system.
Furthermore, two progressive approaches are developed to predict force vector, velocity
response vector and power #ows transmitted between substructures in a complex coupled
system consisting of n substructures subject to selected boundary conditions and multiple
excitations. The proposed methods are very e$cient and greatly reduce the complexity of
the power #ow analysis when examining complex dynamic, coupling systems. For the
special case of periodic systems, where the substructures are identical, these methods
become even more e!ective. To demonstrate the application of the proposed generalized
approaches, the dynamics of a #exible raft vibration isolation system is investigated.

2. DESCRIPTION OF A DYNAMIC COUPLED SYSTEM MODEL

Figure 1(a) illustrates schematically a generalized complex coupled system with
n subsystems S

k
(k"1, 2,2,n), where each substructure represents either a rigid or #exible

component of the global system, or several di!erent components in one substructure. The
rigid component possesses six degrees of freedom, whereas a #exible structure subject to
various boundary conditions admits multiple degrees of freedom. A representative
substructure S

k
with r

k
inputs and r

k`1
outputs within the global system is shown in Figure 1(b).
Figure 1. A general multiple input}output dynamic coupling system. (a) Global system; (b) a representative
substructure S

k
(k"1, 2,2,n) with r

k
inputs and r

k`1
outputs; (c) a symbolic representation of the coupled

systems with n substructures.
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The kth substructure S
k
is connected to substructures S

k~1
and S

k`1
, through generalized

interfacial force vectors denoted by F
k

and F
k`1

respectively.
As its practical case is that a moment is added to a structure always through a couple of

forces with equal magnitude but opposite direction applied at two positions or
a distribution force, which can be approximated by several concentrated forces as used
in "nite element analysis, on a surface of the structure, one can represent each input
vibration excitation by the force vector f

kj
"M f

xj
, f

yj
, f

zj
NT ( j"1, 2,2, r

k
). In general,

therefore, all excitation forces can be represented by the generalized force vector
F
k
"M f

k1
,2, f

kj
,2, f

krk
NT. The corresponding velocity response vector is denoted

by V
k
"Mv

k1
, 2,v

kj
,2,v

krk
NT, where each velocity vector is represented by

v
kj
"Mv

xj
, v

yj
, v

zj
NT ( j"1, 2,2, r

k
). Similarly, the generalized output force and velocity

vectors are represented by F
k`1

and V
k`1

respectively. Figure 1(c) shows a symbolic
representation of a coupled system with n substructures. General, combined dynamic
excitations are accounted for in the mathematical model and they relate to vibrations
caused not only by force or motion excitations applied to substructure S

1
but also force or

motion excitations of the supporting substructure S
n
. For example, for di!erent prescribed

boundary conditions, the dynamic coupling problems represented by Figure 1(c) can be
categorized into the following four cases:

Case 1: F1"F) 1, Vn#1"V) n#1. The system is excited by a prescribed force vector
F
1
"Mf

11
,2, f

1j
,2, f

1r1
NT acting on substructure S

1
and a prescribed velocity vector

V
n`1

of substructure S
n
, or the boundary output velocity responses of S

n
to have given

values. Substructure S
1

may represent one or a group of vibrating machines on which the
force vector F

1
"M f

11
, f

12
,2, f

1j
,2, f

1r1
NT is a prescribed force vector F) 1 consisting of

r
1

harmonic excitation sources of frequency u, i.e., F1"F) 1. Substructure S
n

represents
a #exible supporting structure either "xed to a rigid foundation with Vn#1"0 or subject to
a motion excitation associated with a prescribed velocity vector Vn#1"V)

n`1
. For

example, a multi-storey building is excited by installed machinery mounted on its top #oor
such as air conditioning equipment and its auxiliaries, and excited by seismic excitations at
its foundation. A #oating raft vibration isolation system is another engineering application
of this case with F1"F) 1, V) n#1"0.

Case 2: V1"V) 1, Vn#1"V) n#1. This case may represent vibrations in the system caused
by motion of substructure S

1
and by prescribed boundary velocity vector V

n`1
of

substructure S
n
. It may also imply that either the input velocity responses of S

1
or the

output velocity responses of S
n

are imposed constraints. Examples of its engineering
applications are passive vibration isolation systems and packaging dynamic systems where
the excitation is caused by the motion of the foundation structure.

Case 3: F1"F) 1, Fn#1"F) n#1 . This system is excited by force vectors acting on
substructure S

1
and substructure S

n
, with no motion constraints assumed on the

boundaries. Typical applications of this analysis are found in ships or submarines subject to
multiple excitations by engine, auxiliary machinery and sea waves. Similarly, when
analyzing aeroplane vibrations, aerodynamic forces and engines are sources of force
excitations.

Case 4: V1"V) 1, Fn#1"F) n#1 . This case is similar to Case 1 with roles and the
numbering of the system reversed.

3. GENERALIZED MOBILITY AND IMPEDANCE MATRICES OF SUBSTRUCTURES

For a complex global structure in which all substructures are di!erent, a general mobility
or impedance matrix of individual substructures is required to characterize the dynamic



Figure 2. Local and global co-ordinate systems and force and velocity vectors acting on the rigid sub-
structure S

k
.
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coupling behaviour of the system. In this section, generalized mobility or impedance matrix
formulations for three-dimensional rigid and elastic structures are derived allowing
description of the dynamical coupling behaviour of a subsystem assembled from several
inter-connected substructures within the overall system.

3.1. RIGID-BODY SUBSTRUCTURE

Figure 2 illustrates a general three-dimensional rigid-body substructure S
k
(k"1, 2,2,n)

with global Cartesian co-ordinate system O-xyz "xed in space, whereas C
k
-X

k
>

k
Z

k
is

a local co-ordinate system, parallel to O-xyz, "xed at the centre of gravity C
k

of the
substructure. The position of C

k
relative to O is de"ned by the displacement vector RC

k
and

the position vectors of the input f
ki

(i"1, 2,2, r
k
) and output f

(k`1) j
( j"1,2,2,r

(k`1)
)

force vectors are de"ned by qki and q(k#1) j , respectively, in the local co-ordinate system
relative to C

k
.

For a steady state sinusoidal excitation e +ut , it follows from rigid-body dynamics theory
[31] that the motion of this substructure S

k
is described by the equations

m
k
RG C

k
"jum

k
vC

k
"

rk
+
i/1

fki#
rk`1

+
l/1

f(k#1)l , (1)

juJk )Xk"
rk
+
i/1

qki]fki#
rk`1

+
l/1

q(k#1)l]f(k#1)l , (2)

where

Jk"

Jk
xx

!Jk
xy

!Jk
xz

!Jk
yx

Jk
yy

!Jk
yz

!Jk
zx

!Jk
zy

Jk
zz
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is the inertia matrix or inertia tensor de"ned with respect to C
k
, m

k
is the substructure's total

mass, vC
k
and Xk are velocity and angular velocity vectors, respectively, u denotes the

excitation frequency of the forces and j"J!1.
From equations (1) and (2), one obtains

vC
k
"

1

jum
k

rk
+
i/1

fki#
1

jum
k

rk`1

+
l/1

f(k#1) l ,

"

1

jum
k

[I, I,2,I]
rk G

fk1

fk2

F

fkr
k

H# 1

jum
k

[I, I,2, I]
rk G

f(k#1)1

f(k#1)2

F

f(k#1)r
k`1

H , (3)

Xk"
1

ju
J~1
k

)
rk
+
i/1

qki]fki#
1

ju
J~1
k

)
rk`1

+
l/1

q(k#1) l]f(k#1)l , (4a)

where I is a unit tensor of the second order.
By simple vector manipulation, this last equation takes the form

Xk"
1

ju
rk
+
i/1

(J~1
k

]qki ) ) fki#
1

ju
rk`1

+
l/1

(J~1
k

]q(k#1)i) ) f(k#1)l , (4b)

or in matrix form

X
k
"

1

ju
MJ~1

k
][q

k1
, q

k2
,2,qkr

k
]N ) G

fk1

fk2

F

fkr
k

H
#

1

ju
MJ~1

k
][q

(k`1)1
, q

(k`1)2
,2,q(k#1)r

k`1
]N ) G

f(k#1)1

f(k#1)2

F

f(k#1)r
k`1

H . (4c)

The velocity vectors at the input and output terminals of this substructure are

vki"vC
k
#X

k
]q

ki
(i"1, 2,2, r

k
), (5)

v(k#1)j"vC
k
#Xk]q(k#1) j ( j"1, 2,2, r

(k`1)
) , (6)

which in matrix form are given by

G
vk1

vk2

F

vkr
k

H"G
I

I

F

I Hr
k

) vC
k
#Xk]G

qk1

qk2

F

qkr
k

H , (7)
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G
v(k#1)1

v(k#1)2

F

v(k#1)r
k`1

H"G
I

I

F

I Hr
k`1

) vC
k
#Xk]G

q(k#1)1

q(k#1)2

F

q(k#1)r
k`1

H . (8)

Substituting equations (3) and (4c) into equation (7) and applying the commutative law for
vector products yields

G
vk1

vk2

F

vkr
k

H" 1

jum
k G

I

I

F

I Hr
k

) [I, I,2,I]r
k
) G

fk1

fk2

F

fkr
k

H
#

1

jum
k G

I

I

F

I Hr
k

) [I, I,2, I]r
k`1

) G
f(k#1)1

f(k#1)2

F

f(k#1)r
k`1

H
!

1

ju G
qk1

qk2

F

qkr
k

H]MJ~1
k

][q
k1

, q
k2

,2,qkr
k
]N ) G

fk1

fk2

F

fkr
k

H
!

1

ju G
qk1

qk2

F

qkr
k

H]MJ~1
k

][q
(k`1)1

, q
(k`1)2

,2,q(k#1)r
k`1

]N ) G
f(k#1)1

f(k#1)2

F

f(k#1)r
k`1

H , (9)

which can be rewritten in the more compact form

V
k
"

1

ju Gm~1
k

) G
I

I

F

I Hr
k

) [I, I,2, I]r
k
!G

qk1

qk2

F

qkr
k

H]J~1
k

][q
k1

, q
k2

,2,qkr
k
] H ) Fk

#

1

ju Gm~1
k

) G
I

I

F

I Hr
k

) [I, I,2, I]r
k
!G

qk1

qk2

F

qkr
k

H
]J~1

k
][q

(k`1)1
, q

(k`1)2
,2,q(k#1)r

k`1
] H ) Fk`1

. (10)
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Similarly, the velocity response at the output terminal of the substructure S
k

becomes

V
k`1

"

1

ju Gm~1
k

) G
I

I

F

I Hr
k`1

) [I, I,2, I]r
k`1

!G
q(k#1)1

q(k#1)2

F

q(k#1) r
k`1

H]J~1
k

][q
k1

, q
k2

,2,qkr
k
] H ) Fk

#

1

ju Gm~1
k

) G
I

I

F

I Hr
k`1

) [I, I,2, I]r
k`1

!G
q(k#1)1

q(k#1)2

F

q(k#1) r
k`1

H]J~1
k

][q
(k`1)1

, q
(k`1)2

,2,q(k#1)r
k`1

] H ) Fk`1
. (11)

Equations (10) and (11) can now be expressed in the mobility matrix form

G
Vk

Vk#1H"Mk ) G
Fk

Fk#1H"C
m(k)

11 m(k)
12

m(k)
21 m(k)

22D ) G
Fk

Fk#1H , (k"1, 2,2,n), (12)

where the sub-matrices m(k)
ij (i, j"1, 2) are the mobility in#uence coe$cient matrices in

tensor form and are de"ned as follows:

m(k)
11
"

1

ju Gm~1
k

) G
I

I

F

I Hr
k

) [I, I,2, I]r
k
!G

qk1

qk2

F

qkr
k

H]J~1
k

][q
k1

, q
k2

,2,qkr
k
] H , (13a)

m(k)
12
"

1

ju Gm~1
k

) G
I

I

F

I Hr
k

) [I, I,2, I]r
k`1

!G
qk1

qk2

F

qkr
k

H]J~1
k

][q
(k`1)1

, q
(k`1)2

,2,q(k#1)r
k`1

] H ,

(13b)



POWER FLOW ANALYSIS BY PROGRESSIVE APPROACHES 283
m(k)
21
"

1

ju Gm~1
k

) G
I

I

F

I Hr
k`1

) [I, I,2, I]r
k
!G

q(k#1)1

q(k#1)2

F

q(k#1) r
k`1

H]J~1
k

][q
k1

, q
k2

,2,qkr
k
] H , (13c)

m(k)
22
"

1

ju Gm~1
k

) G
I

I

F

I Hr
k`1

) [I, I,2, I]r
k`1

!G
q(k#1)1

q(k#1)2

F

q(k#1) r
k`1

H]J~1
k

][q
(k`1)1

, q
(k`1)2

,2,q(k#1)r
k`1

] H . (13d)

The impedance matrix Z
k
is obtained by an inverse transformation of the mobility matrix

M
k
: i.e. Z

k
"M~1

k
. Thus for the kth substructure, it follows from equation (12) that the

dynamic equation expressed in its impedance matrix form is given by

G
Fk

Fk#1H"Zk ) G
Vk

Vk#1H"C
z(k)

11 z(k)
12

z(k)
21 z(k)

22D ) G
Vk

Vk#1H , (k"1, 2,2,n). (14)

3.2. FLEXIBLE SUBSTRUCTURES

The mobility matrix describing the dynamics of a general three-dimensional elastic
substructure S

k
can be derived by adopting a modal analysis approach. Based on the

assumption of a linear system with proportional damping, according to Thomson [32] the
displacement vector u (R, t) at position R of the elastic substructure can be expressed in
terms of a mode shape vector matrix U (R)"[u1, u2,2,up] and a generalized co-ordinate
vector q (t)"[q

1
, q

2
,2,q

p
]T as

u (R, t)"Uq, (15)

where ui(i"1, 2,2,p) is the ith mode shape vector function of the space co-ordinate vector
R"[x, y, z]T, and q

i
(t) is the generalized co-ordinate, corresponding to the ith mode shape

vector function ui . The velocity of the substructure is

v (R, t)"u5 (R, t)"Uq5 "juUq. (16)

From equation (16), the velocity vector V
k
"Mv

k1
,2,v

kj
,2,v

krk
NT at the input points

Rki and the velocity vector V
k`1

"Mv
(k`1)1

,2,v
(k`1) j

,2,v(k#1)r
k`1

NT at the output points
R(k#1)i are denoted by

v
ki
"juU (R

ki
)q, (i"1, 2,2, r

k
),

v
(k`1)i

"juU (R
(k`1)i

)q, (i"1, 2,2,r
k`1

) , (17)
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which can be rewritten in the matrix form as

G
Vk

Vk#1H"ju G
U (Rki)

U (R(k#1)i )H q. (18)

For the three-dimensional elastic substructure S
k
, it can be shown [31,32] that its

generalized co-ordinate vector q satis"es the equation

M (X2
!Ipu2#2jnXu)q"[UT (Rki), U

T (R(k#1)i )] ) G
Fk

Fk#1H, (19)

where M denotes the diagonal matrix of modal mass, Ip a unit matrix of p dimensions, X the
diagonal matrix of the natural frequencies of the substructure with free}free interface
conditions, and n"diag (m

1
, m

1
,2,m

p
), the matrix of modal damping coe$cients. The

generalized co-ordinate vector q is now simply given by the expression

q"(X2
!Ipu2#2jnXu)~1M~1[UT (Rki), U

T (R(k#1)i )] ) G
Fk

Fk#1H. (20)

The substitution of equation (20) into equation (18) yields

G
Vk

Vk#1H"ju G
U (Rki)

U (R(k#1)i )HWp[U
T (Rki ), U

T (R(k#1)i )] ) G
Fk

Fk#1H , (21)

where Wp"(X2
!Ipu2#2jnXu)~1M~1.

Thus, the uni"ed dynamic equation for any substructure S
k

presented in terms of the
generalized mobility matrix M

k
, is given by

G
Vk

Vk#1H"C
m(k)

11 m(k)
12

m(k)
21 m(k)

22D ) G
Fk

Fk#1H , (k"1, 2,2, n), (22)

where
m(k)

11"juU (Rki)WpU
T (Rki), m(k)

12"juU(Rki)WpU
T (R(k#1)i ),

m(k)
21"juU (R(k#1)i)WpU

T (Rki), m(k)
22
"juU(R(k#1)i )WpU

T (R(k#1)i ), (k"1, 2,2,n). (23)

In practice, only a limited number of natural modes of the substructure are admitted in
the calculation of the mobility matrices. The number of modes, p say, can be determined by
applying mode reduction criteria derived from a substructure analysis [33].

4. A PROGRESSIVE METHOD USING EQUIVALENT MOBILITY MATRICES

The theoretical and analytical aims of this investigation are (i) to determine the
interaction forces and the corresponding velocity responses on any interface between
substructures of a complex multiple coupled dynamic system subject to various force vector
and velocity vector excitations and (ii) to predict the vibrational power #ow into and
transmission through each interface of the substructures. These objectives are achieved
through the development of equivalent mobility and velocity transmissibility matrices as
now described.
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An application of the mobility matrices derived for the types of substructures described in
section 3 provides description of the required generalized mobility matrices for
substructures of complex coupled systems with multiple interaction interfaces. In order to
characterize the dynamic coupling e!ect between substructures in the system, an equivalent
mobility matrix (EMM) and a velocity transmissibility matrix (VTM) are "rst introduced
with their respective de"nitions, allowing a sequential or progressive approach to be
formulated. In its present form, this method is suitable to solve problems described by Case
1: F1"F) 1, Vn#1"V) n#1 and Case 2: V1"V) 1, Vn#1"V) n#1 . That is, the evaluation of the
vibrational characteristics of the system subject to imposed generalized boundary excitation
conditions. The progressive approach allows determination of internal forces and response
velocities on interfaces between the substructures of complicated coupled systems, to
predict the dynamic characteristics of the overall coupled system or subsystems consisting
of several substructures and to provide an estimation of input and transmitted power #ows
between the substructures.

From previous discussions, it has been shown that the dynamic equations describing the
dynamical characteristics of all substructures S

k
(k"1, 2,2,n) can be represented by the

generalized mobility matrix expressions

G
V1

V2H"C
m(1)

11 m(1)
12

m(1)
21 m(1)

22D ) G
F1

F2H, (24)

G
Vk

Vk#1H"C
m(k)

11 m(k)
12

m(k)
21 m(k)

22D ) G
Fk

Fk#1H, (25)

G
Vn!1

Vn H"C
m(n!1)

11 m(n!1)
12

m(n!1)
21 m(n!1)

22 D ) G
Fn!1

Fn H , (26)

G
Vn

Vn#1H"C
m(n)

11 m(n)
12

m(n)
21 m(n)

22D ) G
Fn

Fn#1H. (27)

From equation (27) for substructure S
n
it follows that

Fn#1"[m(n)
22]~1 ) Vn#1![m(n)

22]~1 ) m(n)
21 ) Fn, (28)

Vn"Mm(n)
11!m(n)

12 ) [m
(n)
22]~1 ) m(n)

21N ) Fn#m(n)
12 ) [m

(n)
22]~1 ) Vn#1

"Mne ) Fn#Mnv ) Vn#1, (29)

where

Mne"Mm(n)
11!m(n)

12 ) [m
(n)
22]~1 ) m(n)

21N , Mnv"m(n)
12 ) [m

(n)
22]~1 . (30)

Substituting equation (29) into equation (26) for substructure S
n~1

one can derive the
following equations describing the coupling characteristics of two adjacent substructures
S
n
and S

n~1
:

Fn"[m(n!1)
22 !Mne]~1 ) [Mnv ) Vn#1!m(n!1)

21 ) Fn!1], (31)

Vn!1"Mm(n!1)
11 !m(n!1)

12 ) [m(n!1)
22 !Mne]~1 ) m(n!1)

21 NFn!1

#m(n!1)
12 ) [m(n!1)

22 !Mne]~1 ) Mnv ) Vn#1

"M(n!1)e ) Fn!1#M(n!1)v ) Mnv ) Vn#1, (32)
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where

M(n!1)e"Mm(n!1)
11 !m(n!1)

12 ) [m(n!1)
22 !Mne]~1 ) m(n!1)

21 N ,

M(n!1)v"m(n!1)
12 ) [m(n!1)

22 !Mne]~1. (33)

The continuation of this procedure leads to the following progressive or sequential
formulation characterizing a coupled global system consisting of substructures
S
1
, S

2
,2,S

k
,2, S

n
. Namely,

Vk"Mke ) Fk#Nkv ) V) n#1,

Fk#1"[M(k#1)e!m(k)
22]~1 ) m(k)

21 ) Fk#[m(k)
22!M(k#1)e]~1 ) N(k#1)v ) V) n#1,

P
k
"1

2
ReMFH

k ) VkN,

Mke"m(k)
11!m(k)

12 ) [m
(k)
22!M(k#1)e]~1 ) m(k)

21,

Nkv"Mkv ) M(k#1)v2Mnv ,

Mkv"m(k)
12 ) [m

(k)
22!M(k#1)e]~1, (k"1, 2,2,n),

M(n#1)e"0, (34)

where P
k

denotes the power #ow through any interface of the kth substructure, H the
Hermitian transpose and 0 the zero matrix.

The matrix M
ke

de"nes the equivalent mobility matrix (EMM) of substructure S
k
coupled

to subsystems S
k`1

,2,S
n

(k"1, 2,2,n). Physically, this matrix represents the velocity
response vector V

k
at the input coupling interface of S

k
in the global system excited by a

unit coupling force vector F
k

at the interface between S
k~1

and S
k
. The introduction of

EMM allows characterization of the dynamic coupling relation between substructures and
subsystems consisting of several substructures in the overall system.

The matrix N
kv

de"nes the velocity transmissibility matrix (VTM) which represents the
velocity response vector V

k
produced by a unit velocity input V) n#1, and it re#ects the e!ect

of the boundary motion excitations V) n#1 upon substructure S
k

(k"1, 2,2, n).
As these expressions indicate, all inverse matrix processes do not involve any generalized

matrix inverses introducing uniqueness requirements [30]; this contrasts signi"cantly with
the vectorial four-pole parameter method [28, 29]. The progressive approach described by
equation (34) begins from the prescribed excitation force vector F

1
for Case 1 or from the

prescribed excitation velocity vector V
1

for Case 2. It is a forward sequential or progressive
process from k"1 to n. Thus, the internal coupling force vector F

k
and the velocity

response vectors V
k

(k"1, 2,2, n) on any substructure interface of the system are
determined systematically. Moreover, the power #ow P

k
through any interface between

substructures within the complex coupled system is e$ciently predicted, and this is both
advantageous and bene"cial when undertaking a power #ow analysis in complex coupled
systems.

5. A PROGRESSIVE METHOD USING EQUIVALENT IMPEDANCE MATRICES

The derivation process used previously can be directly applied to develop a progressive
method, based on the equivalent impedance matrices of the substructures, for analysis of the
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complex coupled dynamic systems subject to the boundary excitation conditions described
in Case 3: F1"F) 1, Fn#1"F) n#1 and Case 4: V1"V) 1, Fn#1"F) n#1. This is described as
follows.

For all the multiple coupled substructures S
k

(k"1, 2,2,n), the equations describing
their dynamic behaviour are represented by the generalized impedance matrices

G
F1

F2H"C
z(1)

11 z(1)
12

z(1)
21 z(1)

22D ) G
V1

V2H, (35)

F

G
Fk

Fk#1H"C
z(k)

11 z(k)
12

z(k)
21 z(k)

22D ) G
Vk

Vk#1H, (36)

F

G
Fn

Fn#1H"C
z(n)

11 z(n)
12

z(n)
21 z(n)

22D ) G
Vn

Vn#1H (37)

as de"ned in equation (14). By repeating the analysis described in section 4, the
impedance-based expressions describing the dynamics of the kth substructure are given by

Fk"Zke ) Vk#TkF ) F) n#1 ,

Vk#1"[Z(k#1)e!z(k)
22]~1 ) z(k)

21 ) Vk#[z(k)
22!Z(k#1)e]~1 ) T(k#1)F ) F) n#1,

P
k
"1

2
Re MFH

k ) VkN,

Zke"z(k)
11!z(k)

12 ) [z
(k)
22!Z(k#1)e]~1 ) z(k)

21,

TkF"ZkF ) Z(k#1)F2ZnF,

ZkF"z(k)
12 ) [z

(k)
22!Z(k#1)e]~1, (k"1, 2,2,n),

Z(n#1)e"0. (38)

The matrix Z
ke

de"nes the equivalent impedance matrix (EIM) of substructure S
k
coupled

to subsystems S
k`1

,2,S
n
(k"1, 2,2,n). The matrix T

kF
de"nes the force transmissibility

matrix (FTM) which represents the force vector F
k
produced by a unit dynamic input force

F) n#1 exerted on the boundary of substructure S
n
, and it represents the e!ect of the

boundary force excitations upon substructure S
k

(k"1, 2,2,n).
The introduction of EIM now allows the characterization of the dynamic coupling

between substructures. The prediction process is similar to the one described in section 4.
For example, the EIM approach commences from the prescribed excitation force vector
F
1

for Case 3 or from the prescribed excitation velocity vector V
1

for Case 4 and progresses
forward until substructure k"n is reached. Again, the EIM progressive or sequential
method provides another e!ective method to predict the power #ow transmissions between
substructures in complex coupled systems.
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6. APPLICATION OF THE PROGRESSIVE METHOD TO A RAFT ISOLATION SYSTEM

6.1. MODEL OF RAFT ISOLATION SYSTEM

Various types of #oating rafts have been installed in buildings, ships and o!shore
constructions as advanced isolation systems to provide better vibration and acoustic
isolation e!ectiveness [22, 34}37]. A typical installation consists of one or several vibrating
machines mounted via isolators onto a continuous #oating raft structure supported by
a series of resilient pads to a base structure. For example, Figure 3 shows a #oating raft
isolation system idealized by "ve substructures S

k
(k"1, 2,2,5). Substructure S

1
models

two machines mounted through four isolators (l"1, 2, 3, 4) grouped in twos in
substructure S

2
with each isolator group supporting one machine. Theoretically, the

number and distribution of components in each isolator group may vary and the isolator
groups are thus not necessarily identical, but in practice, it is more usual for them to be so.
These isolators are attached to a #exible raft S

3
of mass m

r
and through N identical isolators

in substructure S
4

to a #exible foundation S
5

of mass m
b
. The two machines are treated as

rigid bodies of masses m
1

and m
2

respectively. The dynamic characteristics of the isolator
groups in substructure S

2
are idealized as spring}mass}spring systems with their complex

sti!ness K*
l
"K

l
(1#jg

l
) and lumped masses M

l
(l"1, 2, 3, 4) located at the middle of

each spring as shown in Figure 4. The raft S
3

is idealized by a free}free beam, with complex
sti!ness E*"E (1#jd ) re#ecting structural elasticity E and damping d. Similarly, the
N identical isolators form substructure S

4
in which each isolator is idealized as a lumped

system consisting of a complex sti!ness K*"K(1#jg), damping g and lumped mass M.
The spring}mass}spring system shown in Figure 4 has two degrees of freedom for which the
"rst natural frequency is zero representing its rigid motion and the second one equals the
"rst natural frequency X(2)

l
of the elastic isolator "xed at its two ends. This model is used to

describe the dynamic e!ect of the elastic isolator caused by its rigid motion and elastic
deformation relative to its two ends. The non-zero lumped masses M

l
(l"1, 2, 3, 4) can be

determined by the equation X(2)
l
"2JK

l
/M

l
. If the mass e!ect of an isolator is neglected,

its sti!ness matrix is singular and the correponding mobility matrix does not exist. For this
approximation, the impedance method described in section 5 may be chosen. It is also
noticed that the isolator mass is simply applied to the supporting panel in reference [20],
and yet another approximation may be made as used in "nite element formulations, i.e.,
attaching 1

2
mass evenly to the two ends of the spring element of the sti!ness K*

l
. The

foundation is treated as an end clamped}clamped #exible beam and is also modelled by
Figure 3. Flexible #oating raft isolation system subject to multiple excitations.



Figure 4. Idealized isolator model.
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a complex-valued sti!ness similar to substructure S
3
. No particular requirements are

imposed (i.e., symmetry) on the overall arrangement of the system.

6.2. MOBILITY MATRICES OF SUBSTRUCTURES

Applying the theory described in section 3, one obtains the mobility matrices for each
substructure as follows.

For substructure S
1

with two inputs and four outputs, the generalized mobility matrix
M

1
is expressed as

G
V

11
V

12

2

V
21

V
22

V
23

V
24

H"C
m(1)

11
m(1)

12
m(1)

21
m(1)

22
D ) G

F
11

F
12

2

F
21

F
22

F
23

F
24

H (39)

and the sub-matrices of matrix M
1

are given by

m(1)
11"

1

ju C
1/m

1
0

0 1/m
2
D, m(1)

12"
1

ju C
1/m

1
1/m

1
0 0

0 0

1/m
2

1/m
2
D, m(1)

21
"[m(1)

12
]T,

(40a}c)

where J
1

and J
2

denote the rotational inertia of each machine about its centre of
gravity, respectively, and u represents the frequency of excitations applied to the
machines.
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m(1)
22"

1

ju

1

m
1

#

b2
11
J
1

1

m
1

!

b
11

b
12

J
1

sym

1

m
1

#

b2
11
J
1

02]2

02]2

1

m
2

#

b2
13
J
2

1

m
2

!

b
13

b
14

J
2

sym

1

m
2

#

b2
13

J
2 4]4

, (40d)

For the isolator substructure S
2

consisting of four isolators (l"1, 2, 3, 4), say, each
idealized by the model shown in Figure 4, the generalized mobility matrix M

2
is repre-

sented by

m(2)
11"diag C

ju (4K*
l
!M

l
u2) (2K*

l
!M

l
u2)

2K*
l
[(2K*

l
!M

l
u2)2!(2K*

l
)2]D 4]4

, (41a)

m(2)
12"diag C

ju (4K*
l
!M

l
u2)

[(2K*
l
!M

l
u2)2!(2K*

l
)2]D4]4

"m(2)
21 , (41b)

m(2)
22"m(2)

11 . (41c)

Similarly, for the N isolators in substructure S
4
, the sub-matrices of the generalized

mobility matrix M
4

are given by

m(4)
11"a (2K*!Mu2) IN]N"m(4)

22 , (42a)

m(4)
12"2K*a IN]N"m(4)

21 , (42b)

where

a"
ju (4K*!Mu2)

2K*[(2K*!Mu2)2!(2K*)2]
. (42c)

For the #exible #oating raft system S
3
, the mobility matrix M

3
can be derived by using

the modal analysis method described in section 3. The sub-matrices of M
3

are

m(3)
11"[s

ls
(x(3)

l
, x(3)

s
)]4]4 , m(3)

12"[s
ls
(x(3)

l
, x(4)

s
)]4]N , (43a, b)

m(3)
21"[s

ls
(x(4)

l
, x(3)

s
)]N]4"m(3)T

12 , m(3)
22
"[s

ls
(x(4)

l
, x(4)

s
)]N]N , (43c, d)

where

s
ls
(x

l
, x

s
)"

ju
m

r

p
+
n/1

u
n
(x

l
)u

n
(x

s
)

[X (3)
n

]2 (1#jd)!u2
. (43e)

Here x(3)
l

(l"1, 2, 3, 4) denotes the position co-ordinates of the isolators in substructure
S
2

mounted between the machines and the raft, and x(4)
s

(s"1, 2,2,N) those in
substructure S

4
mounted between the raft and the supporting structure. u

n
(x) is the normal

mode function of the free}free beam for the raft structure in S
3
.
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By following the same procedure, the mobility matrix for the supporting foundation
S
5

can be described in the form

M5"[m(5)
sk

]N]N , (44)

m(5)
sk
"

ju
m

b

=
+
n/1

t
n
(x(5)

s
)t

n
(x(5)

k
)

[X (5)
n

]2 (1#jd)!u2
, (s, k"1, 2,2,N ) , (45)

where t
n

denotes the normal mode function of the end clamped}clamped beam of the
idealized supporting structure in S

5
, and x(5)

s
(s"1, 2,2,N) represents the position

co-ordinates of the isolators mounted on the supporting foundation. With all mobility
matrices derived, we can now determine all the forces, velocity responses and power #ow
through the coupled interfaces of the system by applying the mobility progressive method.

6.3. PROGRESSIVE FORMULATIONS

For this demonstration of the progressive approach to the #exible raft isolation system
shown in Figure 3, the prescribed excitation force vector F

1
"Mf

11
, f

12
NT, and a clamped

boundary condition is imposed on substructure S
5
, i.e. V) 6"0. For this reason, the

mobility-based approach method is used, as discussed in section 4. For illustration purposes
and as a special example of Case 1, it follows that n"5 and V) n#1"0 in equation (34), and
the mobility progressive formulations reduce to the form

Vk"Mke ) Fk ,

Fk#1"[M(k#1)e!m(k)
22]~1 ) m(k)

21Fk ,

P
k
"1

2
ReMFH

k ) Mke ) FkN , (46)

Mke"m(k)
11#m(k)

12 ) [M(k#1)e!m(k)
22]~1 ) m(k)

21 , (k"1, 2,2,5) ,

Mke"0,

6.4. NUMERICAL RESULTS

In designing raft isolation systems, estimation of the total power #ow transmitted to the
foundation is of ultimate importance. This is often used as the cost function minimized to
assess vibration control [20, 21, 38, 39]. Therefore, the transmitted forces F

5
and velocity

responses V
5

at the N mounting points as well as the total power #ow P
5

transmitted to
the supporting foundation through the N anti-vibration mountings are presented here
to illustrate the dynamic characteristics of the chosen #oating raft vibration isolation
system.

For simplicity of calculations and to illustrate the mobility-based approach, one can
consider only vertical harmonic excitation forces of the forms f

11
"e+ut, j"f

12
/f
11
"2. In

the subsequent calculations the following data are used: m
1
"m

2
"2500 kg,

J
1
"J

2
"414)6 m4 , b

ij
"1 m (i, j"1, 2); K

l
"1)67 MN/m, M

l
"0, g

l
"0)3 (l"1, 2, 3, 4);

K"4)12 MN/m, M"0, g"0)2, N"4; m
b
"1250 kg; density of both beams

o"7850 kg/m3 and Young's modulus E"2)07]1011 N/m2, damping d"0)05. For the
#exible beams, the "rst 30 natural modes (i.e., p"30) are admitted into the power #ow
calculations. (Such a number is used only to illustrate the applicability of the approach and



Figure 5. Power #ow spectra in#uenced by the sti!ness of the raft structure in substructure S
3
: **,

X(3)
1
"70 rad/s; - - - -, X(3)

1
"169 rad/s.

Figure 6. Comparison of P
5
(u) for X(3)

1
"70 (- - - -) and 1200 rad/s (**).
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questions of sensitivity of mathematical modelling, accuracy, etc., are excluded from this
study.) The power #ow spectra are expressed in decibel scale (dB reference: 10~12 W). To
examine the e!ect of the #oating raft sti!ness on power #ows, three di!erent fundamental
frequencies: X(3)

1
"70, 169, 1200 rad/s, of the #oating raft are considered.

The variations of the power #ow spectra with changes of the free}free #exible beam raft's
fundamental frequency X(3)

1
are shown in Figures 5 and 6. It is observed from these two

"gures that when X(3)
1

becomes relatively high signi"cant reduction in the power #ow
transmission can be achieved. This evidence indicates that an increase in the frequency
X(3)

1
/(dynamic sti!ness of the raft) causes a reduction of the power transmitted to the

foundation, thus providing good vibration isolation. Therefore, to obtain good vibration
isolation and control, it might be prudent to increase the sti!ness of the raft structures.

Figure 7 shows a comparison of the input power spectrum P
1
(u) by the two

machine-generated excitations in substructure S
1

to the total power #ow transmission
spectrum P

5
(u). The di!erence between them indicates the energy dissipated in this raft

isolation system. It is seen that the input power #ow spectrum P
1
(u) is relatively simple in



Figure 7. Comparison of input power #ow spectrum P
1
(u) (- - - -) with output P

5
(u) (**).
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form with one pronounced peak, whereas the transmission spectrum P
5
(u) varies

signi"cantly with the exciting frequencies, since it now contains contributions from the
coupled dynamics of the overall system. This indicates that the total input power is less
sensitive than the total output power to changes in the excitation frequencies. The power
#ow transmission behaviour revealed from these numerical results is supported by
experimental observations and measurements [40, 41].

7. CONCLUSIONS

The generalized mobility/impedance matrices of a three-dimensional rigid/elastic
structure with various con"gurations are derived, which can be used extensively in the
dynamical analysis of a wide range of practical problems in engineering. The equivalent
mobility matrix (EMM) and equivalent impedance matrix (EIM) methods introduced in this
paper provide powerful techniques to describe the dynamical coupling interaction
mechanisms between substructures or a subsystem assembled from several inter-connected
substructures within the overall system. Based on these two proposed matrices, two
progressive or sequential approaches are developed to predict the force vectors and velocity
response vectors as well as the power #ows at interfaces between substructures in complex
coupled systems. The example of a #exible raft vibration isolation system demonstrates the
application of the proposed generalized approaches.

The two mathematical models developed herein have the following attributes.
(1) They apply to practical engineering problems requiring prescribed force and/or

velocity boundary conditions. Namely, boundary value problems relating to the following
conditions: (a) F1"F) 1, Vn#1"V) n#1; (b) V1"V) 1 , Vn#1"V) n#1; (c) F1"F) 1 , Fn#1"F) n#1 ;
(d) V1"V) 1 , Fn#1"F) n#1 .

(2) The system studied herein consists of various substructures, rigid or #exible, as well as
more general con"gurations. For the special case of periodic systems, where the
substructures are identical and the mobility or impedance matrices of substructures are
similar, these methods therefore become even more e!ective.

(3) Multiple excitations and multiple coupled interfaces are considered in the
mathematical model.
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(4) The proposed progressive formulations use the normal inverse process of square
matrices instead of the generalized inverse process of rectangular matrices when dealing
with multi-input/multi-output (MIMO) systems [28, 29]. This provides bene"ts of
simpli"cation when applied to real designs of isolation systems and to the dynamic analysis
of complex coupled systems.

(5) The proposed progressive approaches are systematic in their implementation and are
of a form readily transferable into computer code. They are also very e$cient in reducing
the complexity of a power #ow analysis when applied to complex dynamic coupled systems.

(6) The approach is very conveniently extended if additional substructures are further
connected to the original dynamic system, without involving much additional
computational e!ort.
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